Ongoing Research Projects and Recent Publications

TomoSAR

Multiple images of Synthetic Aperture Radar (SAR) are combined to estimate height information over forests, buildings, or other volumetric backscattering processes.

Curve-based Structure From Motion

Instead of relying on keypoints (only), three dimensional curves are detected in and matched between images. The triangulated curves provide a 3D wireframe model of the object as well as the camera calibration for SFM.

Synthetic Benchmark for SfM/MVS

While real benchmark data provides a limited set of scene-, object-, and camera parameters, synthetic data are often simplified / stylistic and lack effects of the image formation process of real cameras (e.g. noise). SyB3R attempts to close this gap by providing a framework to produce photo- and camera-realistic images with ground truth data to evaluate SFM and MVS.

Generic Object Recognition

A two-stage classification system derives in the first stage a first coarse classification based on low-level image features, which is used in the second stage to estimate the final class posterior based on high-level features. Although designed for PolSAR data, the framework can be applied to any image data without changes. It has been tested on PolSAR, SAR, hyperspectral, optical far-range, as well as optical near range images.

Shape Abstraction

Shape abstraction aims to extract the essence of the shape by removing outliers and complex information while staying close to the measured data.

Multi-Shot Multi-View Stereo

The 3D reconstruction of weakly-textured surfaces is improved by increasing the signal-to-noise ratio. Multiple shots per viewpoint are used, normalized for fixed-pattern noise, and averaged to suppress statistically uncorrelated image noise.

Contact

Ronny Hänsch, r.haensch@tu-berlin.de
http://www.cv.tu-berlin.de
http://www.rhaensch.de